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Introduction
Literature of DHS optimization
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Introduction
Why machine learning methods are interesting
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The selection strategy is One simulated One node is added The result of this game
applied recursively until an game is played 0 the tree Is backpropagated in
unknown position is reached the tree
Agent
|

Deep learning Reinforcement learning Monte Carlo tree search

No guarantee for
optimal/ good
solution in time

Difficult to
implement ML
In DHS optimizing



Why is our work important

Problem 1: Problem 2:

Which algorithm (and model) What is the potential of data-
works best under which driven machine learning
circumstances? methods?

=> benchmark to compare
different algorithms
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Model Implementation
Design choices

The simulation of The simulation of
heat and temperature: pressure:
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Model Implementation
Design choices

__________________________________________________________

Producer

Water pipe
(primary grid)

Connector

Heat exchange
station

Water pipe

(secondary grid)

Consumer



Interface

DHS Optimizer

Heat production Margin (profit - cost)
Electricity production Feasibility
Heat demand Grid status:
> GridPenguin » Temperature,
Mass flow,

Electricity price Heat loss



Model Implementation
The Edge

How water is propagated:
The node method

T7C

t=0 mass flow =27

Example (called from downstream):

. get mass flow from downstream

. push block(s) out

. calculate outlet temperature

. get inlet temperature from upstream
. add new block

. calculate heat loss and pressure loss
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Model Implementation
The Consumer/ Heat Exchanger

Inlet temp
from upstream

—— Valve

Calculate primary
mass flow
& outlet temp
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Primary side

e i S v (e e
Secondary side
(consumer side)

\ ¥ | 67°C

Setpoint Secondary mass flow Fixed
outlet temp reflects heat demand inlet temp



The Producer

CHP Heat pump

|| s8°C 40°C "__)

Geothermal Boiler




The Producer

Power
production

Heat
production

»

The operation region

CHP



Model Implementation
The Producer

Power
production

Heat
production

Cost-related variables:

Operation cost

Maintenance cost

Start up cost

»

The operation region

Constraints:

Ramp of heat/electricity

Max temperature



Model Implementation
The Connector

Split water Join water



Model Validation

How GridPenguin compares to other software and a real grid




Model Validation: Wanda
Why we chose Wanda
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Model Validation: Wanda

Heat loss comparison

120
Wanda
—— the simulator
100 -
o 804
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Constant mass flow

Heat loss (out temp) " T T T v T
- U (heat transfer rate)



Model Validation: Wanda

Heat loss comparison

Flow speed change rate (¥10~°m/s*) | difference
4.95 -0.000123
1.21 -0.000693
0.46 -0.00340

Table 5: Heat loss difference at different mass low changing rate



Model Validation: Wanda

Heat exchanger

The nonlinear relation between
heat transfer coefficient
and mass flow

Heat transfer coefficient (U) with mass flow changes

le7

U (W/K)



Model Validation: Wanda

Heat exchanger

: Control inlet :
1 flow so that .
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The Simulator



Model Validation: Real Grid

Amsterdam south grid




Model Validation: Real Grid

Amsterdam south grid




Model Validation: Real Grid

Amsterdam south grid
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Model Validation: Real Grid

Amsterdam south grid

full grid
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Future Works

Within GridPenguin Around GridPenguin
(algorithms for optimization)

Implementation of storage n Reinforcement learning
and more producer types

Constraint optimization

Study of influence of
simplified pressure

Monte Carlo tree search

More complex grid

topology Mathematical optimization
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Conclusion

The literature lacks a way to accurately and fast
simulate DHS.

We propose GridPenguin as a solution. We aim
to use it as a benchmark tool as well as to
facilitate usage of machine learning.

With an earlier software as well as a real grid we
show the accuracy of GridPenguin.




