

A techno-economic and macro-economic concept study of waste heat utilization of a cement plant

Stefan Puschnigg

Energieinstitut an der Johannes Kepler Universität Linz Linz, NEFI conference, 13-14th of October

GMUNDEN HIGH TEMPERATURE HEAT LINK R&D

DECREASE PRIMARY ENERGY DEMAND THROUGH INDUSTRIAL WASTE HEAT UTILIZATION

- Waste heat potential of 65-100 GWh/a gas-equivalents (HHV); at ~400 $^\circ$ C, 10 MW_{th}
- Gas reduction potential of up to 50 GWh/a (HHV)

INNOVATIVE APPROACHES

Heat extraction, heat storage, heat transport, and operation

INDUSTRIAL PROCESS STEAM PROVISION OVER 1500 M B2B ENERGY COOPERATION

KEY FACTS

Duration: 09/18 - 07/21

Project Volume: € 1,257,366

TECHNOLOGICAL CONSIDERATIONS

UP TO 27 CONFIGURATIONS WERE ANALYZED → MOST PROMISING CONCEPTS (4) WERE EVALUATED OPERATION CONDITIONS

- · Cement plant: continuous operation, but planned and unplanned interruptions can occur; shut down in winter period
- Dairy plant: continuous operation, but has demand fluctuations (+/- 50% per hour)
- · Guarantee of supply: is achieved with gas-boiler backup and heat storage

HEAT EXTRACTION

- Ceramic hot gas filter with finned tube heat exchanger
- Plain tube heat exchanger

HEAT TRANSPORT

- Pressurized water (45 bar, ~240°C)
- CO₂ (100 bar, ~350°C)
- steam (10-25 bar, ~210-250°C)

HEAT STORAGES

• fixed-bed particle storage of 6 MWh, 70 MWh, 330 MWh, 5500 MWh

er cement plant dairy plant waste heat source

Concept: heat recovery (red), storage (blue), transportation (green)

Source: Puschnigg et al. (2021) "Techno-economic aspects of increasing primary energy efficiency in industrial branches using thermal energy storage," Journal of Energy Storage, vol. 36, https://doi.org/10.1016/j.est.2021.102344, 2021.

FRAMEWORK CONDITIONS

FRAMEWORK CONDITIONS HAVE CHANGED SUBSTANTIALLY PRICE LEVEL OF FEBRUARY 2020 INITIALLY APPLIED

- For CAPEX evaluation
- Gas price: 25 €/MWh

PRICE LEVEL AUGUST 2022

- Gas price: 230 €/MWh
- Increase of more than 10 times

CARBON EMISSION REDUCTION POTENTIAL

• 22 000 ton of CO₂ per year

EVALUATION OF CONCEPTS

- Without storage: K0
- With operational storage: K5, K10 (6 MWh_{th})
- With day storage: K10 (330 MWh_{th})

2019-07 2019-10

MODELING DATA FOR TECHNO-ECONOMIC AND MACRO-ECONOMIC ASSESSMENT

Key modeling parameter	value
investment costs (CAPEX):	 K0: ~23 million € (least investment cost concept) K9: ~44 million € (concept of highest investment costs) CAPEX of K5 and K10 are between the CAPEX of K0 and K9
running costs (operating costs; OPEX):	2% of the investment cost are annually considered
economic observation period (useful life):	10 years
interest rate:	6%
specific fuel costs	25 €/MWh for gas and further 2.4 €/MWh for gas network
substituted amount of primary energy	K0: 42 GWh (HHV) K9: 54 GWh (HHV)
funding (especially investment funding):	Up to 30% of investment cost
CO ₂ emission savings:	0.24 t/MWh

→TECHNO-ECONOMIC ASSESSMENT: • net present value (NPV), amortization, annuity

 Sensitivity analyses by varying gas price, gas substitution, CO₂ prices, funding, interest rates, useful lifetime

 \rightarrow MACRO-ECONOMIC ASSESSMENT: gross regional product, net exports, private consumption, employment 5

TECHNO-ECONOMIC ASSESSMENT

INHOUSE TECHNO-ECONOMIC TOOL IS APPLIED, DETAILED RESULTS ARE CONFIDENTIAL CONCEPT K0 (LEAST COST INTENSIVE)

- CAPEX of € 23 million and gas substitution of 42 GWh (HHV), no storage is included
- Economic viability is not given \rightarrow negative NPV
- Considering a subsidy of 30% on investment cost and an CO₂ price of 50 $\in/t \rightarrow$ still negative NPV
- A CO₂ price of around 150 \in /t is estimated to reach economic viability
- Gas substitution and hence cost savings through waste heat utilization cannot compensate the high investment costs

CONCEPT K9 (MOST COST INTENSIVE)

- CAPEX of € 44 million and gas substitution of 54 GWh (HHV), 330 MWh_{th} storage is included
- + Economic viability is not given \rightarrow negative NPV

2022: CONSIDERING NEW FRAMEWORK CONDITIONS

- K0: A gas price of approximately 85 €/MWh is estimated for economic viability (without any funding or CO₂ price)
- K9: A gas price of approximately 120 €/MWh is estimated for economic viability (without any funding or CO₂ price)

MACRO-ECONOMIC ASSESSMENT

INHOUSE TOOL "MOVE" IS APPLIED

POSITIVE DEVELOPMENTS

- Investment impulses in year t=0
- Positive effects on the regional trade balance (net exports) → decrease fossil energy imports
- Mutli-round effects

YEARLY AVERAGE EFFECTS (FROM YEAR 0 TO 10)

- Gross regional product (GRP): +6.2 million €
- Investments: +2.5 million €
- Private consumption: +2.0 million €
- Net exports: +1.7 million €
- Employments: +80
- CO₂ emissions: -9 660 tons

Source: Energieinstitut an der JKU Linz

CONCLUSION AND OUTLOOK

ECONOMIC FEASIBILITY DEPENDS MAINLY ON

- The amount of substituted gas, the gas price, the number of storage cycles (charging/discharging)
- The future development of the European emission allowance price CO₂

2020: ECONOMIC FEASIBILITY

- The project is not feasible for each concept. Fossil driven systems are still too inexpensive.
- Gas substitution cannot compensate the high investment costs

2022: ECONOMIC FEASIBILITY

- The ongoing energy crisis changed framework conditions substantially
- High gas prices have a positive effect on the economic viability, which makes the project economically feasible (although geopolitical incidents are of course negative)

POSITIVE MACRO-ECONOMIC EFFECTS

- An average increase of the gross regional product of 6.2 million € per year
- An average increase in employment of 80 employees per year

STEFAN PUSCHNIGG

ENERGIEINSTITUT AN DER JOHANNES KEPLER UNIVERSITÄT LINZ

THANK YOU!

NEFI is an Energy Model Region funded by the Austrian Climate and Energy Fund