

<u>Thomas Mairegger^{1,2}</u>, Helmut Leibinger¹ and Philipp Stadler¹

¹Rohrdorfer Group, Sinning 1, Rohrdorf, 83101, Germany ² Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck, 6020, Austria

Introduction

Here we show direct carbon capture & electrolysis from cement flue such to enable intensified lean carbon processing from flue gas to value-added chemicals. As such Rohrdorfer poses an energy-efficient CO2-reduction and de-fossilation pathway based on renewable energy. CO₂ in flue gas will hereby be captured by an absorber medium, which is in addition used as catholyte in a custom-designed electrolyzer cell; by that, the energy-intense thermal desorption can be eliminated thus reducing the CO₂ footprint significantly. Central innovation of direct carbon capture & electrolysis is the catholyte medium that absorbs and transports large amounts of CO₂ to the electrode for direct use. Here, we elucidate the merits of such process and compare it with the state-of-the-art, further discuss the needs for the electrolyzer cell and the most promising absorber/catholyte media that ensure high performances at maximum cycling stability.

Roadmap for cement companies -

CO₂ electroreduction products

- Cement industries account for 7-8% of the worldwide CO, emission
- > 1/3 of the CO, emissions need CCU or CCS
- For the climate goal (1.5°C) we need to cut the emissions by **7% each year**
 - Fast innovations in **CO**, reduction technologies

Energy demand

- > Limited market for CO and FA
- \succ Literature reveals already high FE and current densities for FA and CO

Market parameters of CO ₂ reduction products			
Product	Global Production [Mt/year]	Market Price [\$/ton]	Normalized market price [\$/electron] * 10 ³
methanol	110	580	3.1
ethanol	77	1000	3.8
ethylene	140	1300	3
n-propanol	0.2	1430	4.8
CO (syngas)	150	60	0.8
СО	-	600	8
formic acid	0.6	740	16.1
Data according to [1]			

FA and CO only viable products for a cost and energy efficient CO, reduction

Simplified Overview

Decrease of energy demand by a third

Simplified scheme for the **direct CO**, **capture and electroreduction**

Mutual optimization of absorber media and electrolyzer cell

FFG

a) Electrolyzer cell based on PEM cell. Upscaling process with a catalyst surface of b) 4 cm², c) 100 cm² and d) 1000 cm².

- Scale up electrolyzer cell

[1] A. Gawel et al., Electrochemical CO2 reduction - The macroscopic world of electrode design, reactor concepts & economic aspects, iScience, vol. 25, no. 4, p. 104011, 2022, doi: 10.1016/j.isci.2022.104011.

Contact: Thomas.mairegger@rohrdorfer.eu