

NEFI TECHNOLOGY TALK

Drying Processes in Industry

October 12, 2023 10:00 - 12:00, online

FLAGSHIP REGION ENERGY

FTI initiative Flagship Region Energy:

The Climate and Energy Fund of the Austrian government will invest up to 120 million Euros in 3 flagship regions. Focus areas of "Flagship Region Energy" are:

- Model solutions with up to 100% renewable energy
- Strengthening Austria as a leading market for innovative energy technologies
- Largest value for the population

Three Flagship Regions:

Green Energy Lab: Flexibilisation and digitalisation of electricity and heat networks

- NEFI New Energy for Industry: Decarbonisation of the Austrian Industry
- WIVA P&G: Green Hydrogen for energy supply, industry & mobility

Further Information:

- Folder Flagship Region Energy
- vorzeigeregion-energie.at
- nefi.at

NEFI – BACKGROUND & GOALS

Industry accounts for 32% of Austria's final energy demand

Decarbonisation of industrial energy systems 100 % renewable energy supply at selected locations Added value "Made in Austria" through export and technology development Securing the industry location contribution to the economic location

Energy efficiency in industrial drying processes

Michael Lauermann, AIT Austrian Institute of Technology GmbH

NEFI Technology Talk, Drying processes in industry, 12.10.2023, online

DRYING

Deliverables – Dry-F (dryficiency.eu) → D1.2 Specification of performance indicators and validation requirements

LOSSES

	Other losses
	Drying agent loss
	System loss
P	roduct specific water binding characteristic
	Heat transfer
Ev (aporation of moisture 2258 kJ/kg or 0.63 kWh/kg)

Drying energy required in industrial drying systems.

Deliverables – Dry-F (dryficiency.eu) → D1.2 Specification of performance indicators and validation requirements

ENERGY EFFICIENCY FOR DRYERS

Rotary dryer

Fluid bed dryer

Spray dryer Mujumdar, Handbook of industrial drying

Conveyor dryer NEFI Technology Talk, Drying processes in industry, 12.10.2023, online

- EXPECTED ENERGY EFFICIENCY VARIES FROM 40 - 80%
- ACTUAL EFFICIENCY RANGES FROM 20 40%
 - Improper operation (too high temperature or velocity)
 - Improper application (use of existing dryers for other products)
 - Improper design; Conservative design of old dryers (life time is 30-40 years instead of 15-20 years)
 - Some dryers are built in-house with little knowledge
 - No insulation
 - No control

METHODS TO IMPROVE ENERGY SAVINGS

Methods	Potential
Use of heat exchangers	Μ
Model-based control	M-L
Optimized operation	H-M
Multi-stage drying	M-L
Superheated steam drying with utilization of condensation	Н
Use of heat pumps	Н

HEAT PUMP DRYING

- **Higher efficiency**: Recovery and use of the energy of the water vapor through condensation as it exits the air from the drying system, thus increasing efficiency.
- Better controllability: Air flow, temperature and humidity can be precisely controlled with compression heat pumps in drying systems.
- **Product quality**: Lower drying temperatures result in higher product quality. In addition, flavor preservation can be improved by using an inert atmosphere in recirculating air operation.

CONVENTIONAL VS. HEAT PUMP

SUMMARY

- **Methods** to improve energy savings in industrial dryers
- By integrating heat pumps, energy savings of up to 80% can be achieved in the drying process.
- Heat pumps in industrial dryers → deviating operating conditions are a challenge.

EA HPT Annex 59 Heat Pumps for Drying

MICHAEL LAUERMANN Research Engineer Sustainable Thermal Energy Systems Center for Energy

AIT Austrian Institute of Technology GmbH

Giefinggasse 2 | 1210 Vienna | Austria T +43 50550-6414 | M +43 664 88390714 <u>michael.lauermann@ait.ac.at</u> | <u>www.ait.ac.at</u>

NEW ENERGY FOR INDUSTRY

NEFI is an Energy Model Region funded by the Austrian Climate and Energy Fund