Foto © Getty/157645470
„The exergy- and energy-technical optimal integration of a processing plant for the recovery of secondary raw materials from waste streams represents an innovative solution for reducing the waste stream directly within the industrial process. Additionally, the resulted pyrolysis gas in the plant can contribute to the substitution of fossil energy sources in the industrial process and thus increase primary energy efficiency.“
In general, the processing of secondary raw materials is usually realised by complex mechanical processes, which are energy-intensive and, depending on the waste fraction, often difficult to implement economically. To solve this problem, Seccon Gmbh holds a novel patent, which describes the processing of secondary raw materials based on a thermo-chemical process by using industrial waste heat. The thermal energy input enables the separation of organic contaminations of the input material from the mineral or metallic secondary raw materials to be recovered. Depending on the prevailing oxygen concentration, a combustion or a pyrolysis process of the organic contamination takes place. In addition, the resulting pyrolysis gas can be recirculated to industrial plants and thus contribute to the substitution of fossil fuels. Consequently, the industrial primary energy efficiency can be significantly increased by using this novel process.
Within the framework of the project Thermal Cracking Process for Energy Recovery to Industry (TCP_to_Industry), the research is being conducted on a thermo-chemical process for the treatment of secondary raw materials by using industrial waste heat. This should, on the one hand, reduce the amount of residual materials and, on the other hand, substitute fossil energy sources by recycling the pyrolysis gas produced.
For this purpose, a small-scale demonstrator will be developed, improved and integrated into an existing industrial process on a first step. At the same time, energy and exergy optimised integration concepts (e.g. supply with waste heat, use of pyrolysis gas) will be developed by using novel energy models. Besides the aim of successfully integrating the process, the possibility for recovering valuable materials from waste streams and using the resulting pyrolysis gas to substitute fossil energy sources is to be demonstrated. Subsequently, based on these experiences, improvements and concepts, a large-scale demonstrator will be developed into an industrial plant within the framework of the KPC project. Accompanying, the systemic effects of this technology such as the reduction in primary energy consumption, transport of waste and secondary raw material and CO₂ emissions as well as economic aspects will be investigated.
19. December 2023
As part of the NEFI project TCP_to_Industry, the pilot operation of a patented process for the processing of secondary raw materials has commenced.
The test facility was officially inaugurated on November 21, 2023. Project partner Seccon installed the first "Small-scale demonstrator" at the Pettenbach Technology Center. This enables the examination of various input materials on an industrial scale. In the test facility, among other things, aluminum and bio-fertilizer can be recovered from used coffee capsules.
More information10. July 2023
On June 29, 2023, the time had come - the award ceremony of the largest Upper Austrian idea competition, EDISON 2023, took place. Numerous guests attended to honor the best ideas in Upper Austria.
The "Seccon Process," developed as part of the NEFI project's TCP_to_Industry, achieved first place in the innovation category and received a special prize in the sustainability category at the competition.
More information08. February 2022
The NEFI project TPC_to_Industry (Thermal Cracking Process for Energy Recovery to Industry) is developing an exergetic integration concept for a “small-scale demonstrator (SSD)” to process secondary raw materials by using industrial waste heat.
More information